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ABSTRACT
Floating wetland systems potentially can provide a diverse set of ecosystem services 
that collectively improve urban resilience. Despite the growing studies and use of floating 
wetlands in temperate and subtropical climates, the design of floating wetlands in 
tropical climates is still understudied. This paper therefore aims to identify the research 
gaps in landscape planning and synthesize the design typology that can be applied 
to tropical urban conditions. The purpose of this research is i) Identify opportunities 
and challenges in applying floating wetland systems for landscape planning and 
design, ii) synthesize the design typology that can be applied to urban tropical climate 
conditions and iii) demonstrate the application of ecological wetland principles for the 
built environment. This research uses a mixed methods approach by including both a 
narrative review based on 67 peer-reviewed articles as well as case studies from tropical 
climates. The review captures the challenges and opportunities of designing ecological 
floating wetlands in terms of multifunctional usage, site limitation, cost effectiveness, 
social benefit, and ecological habitat creation. For design typology of floating wetlands 
in a tropical climate, we discuss design components based on size, floating mat types, 
structures and materials, planting design, and additional technology. While the first 
case study showcased a design for an ecological floating wetland, the second case 
study illustrates how mathematical modeling can guide sizing and performance 
assessment in planning floating wetland implementation. Ecological floating wetlands 
can provide a positive impact to the urban environment under tropical conditions, but 
the main research gaps include an incomplete understanding of contaminant uptake 
rates associated with different plants, required maintenance of the systems, plant 
robustness, and community appreciation.
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INTRODUCTION

Landscape structures and patterns are considerably 
impacted by urbanization and, in particular, lead to the 
loss of natural wetlands and biodiversity (Loc et al. 2020; 
Ballut-Dajud et al. 2022). This discouraging trend occurs 
despite the estimated global ecosystem service value of 
wetlands (Costanza et al. 2014). Natural wetlands near 
or in an urban area face the dual challenges of ecological 
degradation and mainstreaming ecosystem service 
concepts as an integral part of landscape planning, 
management, and decision making (Loc et al. 2020). 
This type of wicked problem may lead us to consider 
how we might effectively approach the sustainability 
of urban wetlands. Certainly, such wicked problems 
require a multidisciplinary approach to be addressed 
effectively (e.g. Allan 2008; Irvine et al. 2022). In the 
case of reimaging urban wetlands as a reflection of 
Nature-based Solutions (NbS), landscape architects 
could use native plants to create habitat structure for 
native species (Chang et al. 2021), while mimicking 
the ecological functions of wetlands including water 
treatment and habitat creation sites, as well as providing 
recreational or educational facilities and ecological art 
areas (Stefanakis 2019). The design concurrently needs 
to link with engineering performance (Irvine et al. 2022). 
Furthermore, the multidisciplinary approach to NbS 
wetlands reimaging will help to enhance urban resilience 
through flood management, reduced environmental 
degradation, greater urban liveability, urban heat island 
mitigation, carbon sequestration, and food security 
(Bozza et al. 2017). Reimaging urban wetlands, in part, 
is an issue of contested space, with competing pressures 
of urban development and conservation (Mialhe et al. 
2019). In this context, floating wetland systems can 
be used in urban conditions since they do not require 
additional water surface area (Keizer-Vlek et al. 2014; 
Zhang D Q et al. 2014), yet have the potential to enhance 
aquatic ecosystem services (Dai & Chiang 2008). Most 
floating wetland systems designed by engineers focus 
on the treatment function (Smith 2009; Pavlineri et al. 
2017), but there is a need to expand the multidisciplinary 
design thinking approach to NbS in general, and floating 
wetland systems in particular, to optimize ecosystem 
services delivery, including elements of community 
wellbeing and aesthetics. This paper will explore and 
review the fundamental design of ecological floating 
wetlands, especially in tropical climates.

Floating wetlands can be implemented in both lotic 
(De Stefani et al. 2011; Kamble & Pathid 2012) and 
lentic systems (Borne et al. 2013; White & Cousins 
2013). Research has shown that this novel sustainable 
cleansing approach can perform well even under 
challenging environmental conditions (Headley & Tanner 
2012; Zhang D. Q. et al. 2014), but the performance can 
vary, depending on hydraulic loading rate, size, depth, 

and hydraulic residence time (Winston et al. 2013; 
Pavlineri et al. 2017), plant types, physiology, and density 
(Chang et al. 2013; Keizer-Vlek 2014; Chua et al. 2012), 
floating mat types (Kamble & Pathid 2012; Lynch et 
al. 2015), plant harvesting methods (Wang et al. 2014; 
Zhang C B et al. 2014), and additional technology (Lu 
et al. 2014). Common plants normally used for floating 
wetland structures include Typha, Vetiver Polygonum, 
and Iris. Despite research done using conventional 
plants for floating wetlands, few studies have examined 
the performance of edible plant species for floating 
wetlands. Thick mats of floating morning glory (Ipomoea 
spp.) cultivated as a crop in the natural wetland of Boeng 
Cheung Ek, Phnom Penh, Cambodia (Loc et al. 2020) 
reduced E. coli and detergents levels by 99.9% and 
87% respectively, within 200 m from sanitary sewage 
point of entry to the wetland (Irvine et al. 2008). Zhang 
Q. et al. (2014) also showed that morning glory could 
improve water quality in carp aquaponic pond systems, 
although, safety issues for human consumption were 
flagged. Zheng et al. (2009) in a laboratory study found 
the treatment efficiency of edible spicy water celery was 
limited but water celery can be edible since the plant 
slowly uptakes the nutrients. Floating wetland studies 
have been conducted in temperate and subtropical 
climates (De Stefani et al. 2011; Winston et al. 2013; 
Chang et al. 2013; Li et al. 2018; Spangler et al. 2019), but 
examination of floating wetlands in tropical climates is 
still limited (Chua et al. 2012). Lim & Lu (2016), suggested 
that Singapore’s “Active, Beautiful, Clean (ABC) Water 
Policy’’ included innovative visioning but required stronger 
scientific evidence with respect to performance of the 
green infrastructure. Ecologic and hydrologic modeling 
often are employed by the engineering community to 
assess design performance and these techniques should 
be adopted to the landscape architecture toolkit (Irvine 
et al. 2021; Salata & Arslan 2022).

This brief introduction suggests more research is 
needed to explore the value of floating wetlands as 
a support mechanism for ecological functions within 
tropical cities, i.e. performance-based aesthetics and 
ecological design. The purpose of this paper therefore 
is i) identify opportunities and challenges for applying 
floating wetland systems in landscape planning and 
design ii) synthesize the design typology that can be 
applied to urban tropical climate conditions and iii) 
demonstrate the application of ecological wetland 
principles for the built environment.

METHODS

This research uses a narrative review approach based on 
67 articles from the Scopus and Google Scholar search 
engines. Keywords, including ‘Floating wetland’; ‘Artificial 
floating islands’; ‘Ecological floating bed’; ‘Constructed 
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wetlands’; ‘Ecological stormwater treatment’; ‘Urban 
water management’; ‘Nature-based solutions’; 
‘Landscape design’; Landscape planning’; ‘Tropics’; and 
‘Tropical climate’ were used to search for the pertinent 
articles.

In addition, we provide two case studies to illustrate 
the application of ecological wetland principles for NbS 
and the built environment following the embedded case 
study approach that focuses on multiple-case design as 
outlined by Yin (2014). The two selected case studies 
of ecological floating wetlands share a similar context, 
being situated in a tropical climate. The first case study 
has embedded units of analysis associated with the 
design typology that reflects planting design variation. 
The second case study has embedded units of analysis 
related to nutrient uptake for water quality improvement.

The first case study explores the design and 
implementation of a floating wetland that was 
constructed at the Faculty of Architecture and Planning, 
Thammasat University, between 2019–2021. This 
demonstration wetland shows the possibility in design 
with complexity concepts and plant diversity as an 
educational tool.

The second case study presents a modeling 
application to assess performance of free floating (but 
spatially contained) emergent macrophytes in managing 
nutrient levels for a reservoir in Singapore. Constructed 
between 1972 and 1974, the reservoir has a surface 
area of about 450 ha, a mean depth of around 3.5 m 
and a maximum depth of 17 m. Dissolved phosphate 
levels were highest in the years immediately following 
the reservoir construction, up to a range of 1.22 mg/L, 
but decreased after implementation of stricter discharge 
controls (Appan and Wang, 2000). Nonetheless, TN, TP, 
and chlorophyll a levels in the eutrophic range still are 
observed for parts of the reservoir (Te & Gin 2011; Xing 
et al. 2014) and management of nutrient sources would 
be beneficial in reducing potential issues with algae 
blooms. The reservoir catchment is 5,700 ha in area and 
has four main tributaries. Land use is a mix of high and 
low density residential and commercial areas, but there 
also is a large proportion of forested area (33.5%) and 
agriculture (5%, mostly chicken farms, with smaller areas 
of horticulture, nurseries, and aquaculture activities). The 
area is serviced by a concrete-lined separate stormwater 
drainage system. PCSWMM (Personal Computer Version 
of the Stormwater Management Model) was used to 
model total phosphorous (TP) and total nitrogen (TN) 
loading rates (kg/day) entering the reservoir from 
the catchment. To evaluate the ability of emergent 
macrophytes in reducing reservoir loadings, the period 17 
November 2014–18 December 2014 was assessed, since 
the total rainfall depth during this time (271 mm) was 
typical of November-December rainfall (250–300 mm/
month, http://www.weather.gov.sg/climate-climate-of-
singapore/).

RESULTS AND DISCUSSION

OPPORTUNITY AND CHALLENGE FOR 
LANDSCAPE PLANNING AND DESIGN
The opportunity for applying floating wetlands in urban 
areas is impacted by several issues, including water 
quality, site limitation, aesthetics, community needs, 
cost effectiveness, wildlife and aquatic habitat (Hwang & 
LePage 2011). Maintenance also is a crucial issue when 
implementing floating wetlands for water treatment. 
The opportunities and challenges related to these issues 
as identified in the literature review are summarized in 
Table 1.

Material from Table 1 suggests that floating wetlands 
can be applied successfully within urban environments 
for multifunctional usage. The review showed that 
the ecological system can improve water quality with 
minimum cost and land requirements. It is clear that the 
ecological design of floating wetland systems bridges 
between engineering and landscape architecture.

From the aspect of social needs and benefits, this green 
technology is socially accepted for small to medium 
sized wastewater treatment (Zhang D Q et al. 2014; 
Sharley et al. 2017), but the aesthetic of it might be less 
understood by the general public and requires improved 
community outreach (Ngiam et al. 2017). Ultimately, the 
future challenges of ecological floating wetland design 
can be addressed through design typology, as discussed 
in the next section.

DESIGN TYPOLOGY OF FLOATING WETLANDS 
IN A TROPICAL CLIMATE
Constructed wetlands have long been used in urban 
water management practices (Kadlec, 1995), and can be 
classified as Free Water Surface (FWS) systems, Subsurface 
Flow (SSF) systems (SFS), Vertical Flow (VF) systems, 
or a hybrid system from an engineering perspective 
(Koottatep & Panuvatvanich 2010). While the engineering 
focus is on the hydraulic and water quality performance 
of the wetland, Kadlec (1995) noted that ancillary wildlife 
and human uses were an important component of 
constructed wetlands and should be acknowledged in the 
design. In a different approach to classifying constructed 
wetlands, Sundaravadivel & Vigneswaran (2001) 
suggested three typologies: constructed habitat wetlands, 
constructed flood control wetlands, and constructed 
aquaculture wetlands. An important advantage for 
wetlands in tropical climates is that plants grow year-
round with a positive water treatment impact (Koottatep 
& Panuvatvanich 2010). With respect to design typologies 
for floating wetlands, there appear to be three principal 
typologies and tropical climates may produce signature 
characteristics i) treatment floating wetland ii) habitat 
floating wetland and iii) productive floating wetland. The 
design typology can be characterized based on ecosystem 
services (Reid et al. 2005) as show in Table 2.

http://www.weather.gov.sg/climate-climate-of-singapore/
http://www.weather.gov.sg/climate-climate-of-singapore/
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ISSUES OPPORTUNITY (O) & CHALLENGE (C) REFERENCE

Multifunctional 
usage
Water quality 
improvement

O Artificial wetland can be used in gold mine rehabilitation for leachate treatment in the 
subtropical climate of Australia

Greenway & 
Simpson (1996)

O Floating wetlands can be a useful component for stormwater treatment trains 
providing an optional design to existing pond-based treatment system

Headley & Tanner 
(2012)

O, C Controlled and field experiment using floating wetland system to treat water for a 
reservoir in Singapore. Typha nutrient uptake rate was superior to Vetiver and Polygonum

Chua, et al. (2012)

O Artificial floating islands were used in the River Mula and Mutha, in Pune City, India to 
improve water quality

Kamble & Patil 
(2012)

O Comparison study between retention pond with floating wetlands vs. regular pond 
shows that retrofitting the floating wetlands can effectively improve water quality

Borne et al. (2013)

O, C In temperate climate, Iris can be used in floating treatment wetlands in urban and 
agricultural conditions which overcome with the excessive algae growth

Keizer-Vlek et al. 
(2014)

O In sub-tropical climates, floating wetlands can be used for agricultural wastewater 
runoff treatment

Spangler et al. 
(2019)

Edible green 
infrastructure

O, C Water spinach as part of a floating wetland significantly improved water quality in crab 
ponds, Wushe, Shanghai City, China, however heavy metals should be tested for safe 
consumption

Zhang, Q. et al. 
(2014)

Site limitation
Locations

O An experiment using a commercial floating system filled with macrophyte species in a 
lotic system shows efficiency to improve water quality in COD, BOD, N and P

De Stefani et al. 
(2011)

O, C Full scale experiment using floating marsh for uptaking Ni and Zn from highway runoff 
in Northern France.Biomass needs to be harvested yearly

Ladislas et al. 
(2015)

C It is important for planners to understand urban land uses and evaluate landscape 
activities in catchment areas before choosing the right stormwater treatment option 
and application

Sharley et al. 
(2017)

Cost effectiveness
Minimum cost and 
land requirement

O, C The research confirmed that Typha angustifolia can be used in floating wetlands when 
space and cost are limited compared to Canna iridiflora

Weragoda et al. 
(2012)

O From the review, constructed wetlands were recommended for wastewater treatment 
in small and medium sized towns where land is available and affordable

Zhang, D.Q. et al. 
(2014)

Social benefit
Community needs

O Constructed wetlands are socially accepted to be a green technology for stormwater 
treatment in an urban landscape

Sharley et al. 
(2012)

Perception and 
aesthetic

C City dwellers surveyed in London did not appreciate the natural function or wild look of 
wetland plants

Ngiam et al. (2017)

Ecological habitat 
creation
Increasing urban 
biodiversity and 
landscape diversity

C Review showed a limited number of macrophyte species are used in wastewater 
treatment wetlands compare to possibilities over 150 species that can be found in the 
systems globally

Dai & Chiang 
(2008)

O A good design and suitable plant selection for artificial wetland design can also create 
the ecological benefit for example, urban wildlife habitat

Shaharuddin et al. 
(2011)

O The artificial floating island can form a unique ecological habitat for aquatic species, 
insects, dragonflies and birds in the Li-Yu Lake, Taiwan

Wu et al. (2014)

O, C Since urban ponds are neglected and tend to have a very poor ecological quality, there 
should be strategies to increase biodiversity

Noble & Hassall 
(2015)

O, C Landscape architect could use native plants to create habitat structure in the urban 
environment for improved connection with the natural ecosystems

Samal et al. (2019)

Climate change C Climate change needs to be considered for designing the future of ecological floating 
wetlands

Chang et al. (2021)

Table 1 Opportunities and challenges in designing an ecological floating wetland.

FLOATING WETLAND DESIGN TYPOLOGY ECOSYSTEM SERVICES (Reid et al. 2005)

Treatment floating wetland Provisioning (Water, Biochemical products)
Regulating (Water quality, Local climate)

Habitat floating wetland Regulating (Climate regulation, Biological regulation)
Habitat or supporting (Nursery habitat, Genetic pool protection)
Education and science opportunities for formal and informal education and training

Productive floating wetland Provisioning (Food, Ornamental species and/or resources)
Cultural and amenity (Aesthetic, Recreational, Inspiration for culture, art, and design, 
Cultural heritage and identity)

Table 2 Floating wetland design ecosystem services.
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The review by Samal et al. (2019) focusing on 
ecological floating beds suggested that additional 
research was needed on design varieties and conditions 
affecting floating wetland systems. The design of 
floating wetlands can be understood through the 
concepts of structure, function, and operation (Headley 
& Tanner 2012). Lim & Lu (2016) examined the design 
of ABC feature performance in Singapore and concluded 
that uncertainty remains with respect to vegetation 
selection, performance over time, location/size/coverage 
and maintenance issues.

Recommendations and experiences related to raft size, 
raft material, planting variety, and additional technology, 
as a step towards formalizing technical aspects of 
design typology, are summarized in Table 3. The sizes of 
the artificial floating bed usually are in the 1 m × 2 m 
range which allows the mat to be easily transported and 
maintained. In modular systems, floating mats can be 
combined and joined to create a larger platform (Wong 
et al. 2013). The size of the floating mat also depends 
on the structure and material. The mat can be designed 
either with or without a frame structure, depending on 
the buoyant material. The commonly used synthetic 
materials are Styrofoam sheet (Yang et al. 2008), special 
foam polyurethane (Kamble & Patil 2012), high-density 
polyethylene (HDPE) (Wong et al. 2013), PVC pipe and 
plastic mesh (Wang & Sample 2013), and recycled plastic 
bottle raft (Siaga et al. 2018). Natural materials also are 
commonly used in raft construction, including bamboo 
(Bernas et al. 2017) and coconut palm fiber (Kamble & 

Patil 2012). Normally, the synthetic material lasts longer 
than the natural material but there is concern over the 
use of synthetic material which might release micro 
plastics to the aquatic ecosystem. Patented, commercial 
mats generally advertise that the material consists of 
high-grade plastic or high-density polyethylene meant 
to reduce harmful byproduct release.

White & Cousins (2013) reported that floating 
wetland systems consisting of Typha angustifolia, 
Canna iridiflora, Chrysopogon zizanioides (L.), Cyperus 
papyrus and Heliconia sp. can lower the N and P from 
stormwater runoff. Dai & Chiang (2008) noted that 
generally there are only a few different macrophyte 
species selected for wastewater treatment, while there 
is potential for over 150 species globally that could 
be implemented. Furthermore, Dai & Chiang (2008) 
expressed concern that monoculture planting may 
result in invasive species replacing the local habitat 
if not maintained well. Studies also highlight that 
biomass harvesting must be undertaken to optimize the 
remediation rate. Above ground harvesting can improve 
phosphorus uptake (Wang & Sample 2013), while Zhang 
C B et al. (2014) found that the removal performance of 
floating wetland systems depended on plant type and 
method of biomass removal. Interestingly, Zhang C B et 
al. (2014) also reported that the bacteria and biofilm on 
the root systems had a relatively small influence on the 
level of pollutant uptake.

For habitat creation Nyakang’o & Bruggen (1999) used 
several plant varieties including, Typha, Cyperus latifolius, 

TYPOLOGIES RECOMMENDATION

Sizes Small to Medium

Large

1 m.– 5 m. (Kamble & Patil 2012)
2 m. × 1 m. (Siaga et al. 2018)
2.5 m. × 2 m. × 1 m. (Chua et al. 2012)
7.8 m.–15 m. × 25 m. using HDPE modular systems (Wong et al. 2013)

Floating mat 
types,
structure, and 
materials

Synthetic material

Reused material
Natural based

Patent materials

Sheets made of foam (Yang et al. 2008)
Special foam polyurethane (Kamble & Patil 2012)
High-density polyethylene (HDPE) modules (Wong et al. 2013)
PVC pipe and plastic mesh (Wang & Sample 2013)
Plastic bottle raft (Siaga et al. 2018)
Bamboo rafting with dirt and compost (Bernas et al. 2017)
Coconut palm fiber (Kamble & Patil 2012)
BioHaven (Headley & Tanner, 2012 Lynch et al. 2015)
Beemats (Lynch et al. 2015; White 2021)
Tech IA (De Stefani et al. 2011)

Planting
design

Water treatment

Habitat creation

Edible species

Typha augustifolia (Koottatep & Polprasert 1997)
Typha angustifolia and Canna iridiflora (Weragoda et al. 2012)
Chrysopogon zizanioides (L.) (Daeajeh, et al. 2016)
Cyperus papyrus and Heliconia sp. (Pérez-Salazar et al. (2019)
Typha, Cyperus latifolius, Cyperus papyrus, Hydrocotyle, Hydrocleis and Pontederia 
(Nyakang’o & Bruggen 1999)
Ipomoea spp. (Loc et al. 2020)
Rice (Bernas et al. 2017)
Chili pepper (Siaga et al. 2018)

Additional
technology

Solar panel
Camera Video 
recording

Green energy floating island is tested to quickly enhance water quality (Lu 2014)
Wildlife observation activity, including; habitation, forage, breeding, nursing, and rest, 
associated with the floating wetland can be observed (Wang et al. 2014)

Table 3 Recommendations and experiences from the literature on floating wetland design in tropical climate.
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Cyperus papyrus, Hydrocotyle, Hydrocleis and Pontederia. 
A number of studies found a positive linkage between 
suitable native plant species and enhancement of the 
urban wildlife habitat (Shaharuddin et al. 2011; Wu et 
al. 2014; Samal et al. 2019). In a tropical climate with 
fluctuating flood conditions, native rice (Bernas et al. 
2017) and chili pepper (Siaga et al. 2018) can be grown 
on the floating wetland raft. As noted in section 3.4, plant 
selection is an important component for water treatment 
in addition to the habitat creation function. If the condition 
of the water is suitable for planting edible species, such 
plants may be included on the floating wetland.

Additional technology and equipment can be added 
to increase the efficiency and function of the ecological 
wetland. Solar panels can be used on floating islands as 
a green energy source to enhance the process of water 
treatment (Lu 2014). Wildlife activities associated with 
the floating wetland can be observed using camera and 
video recording equipment (Wang et al. 2014).

DEMONSTRATION OF ECOLOGICAL FLOATING 
WETLAND AT THAMMASAT UNIVERSITY
The first case study describes an ecological floating 
wetland design and experimental project at the Faculty 
of Architecture and Planning, Thammasat University in 
Thailand. As discussed in the review on floating wetland 

typology, the design focused on the habitat of the floating 
wetland and aimed for creating education and science 
opportunities. The project was included in a year-3 
Landscape Architecture class design competition for PTT 
Plant Together. The floating wetlands were installed in the 
front pond of the school between 2019–2021. This front 
pond has a surface area of 0.12 ha and a mean depth of 
around 1 m with concrete edges and earth bottom. The 
pond is nutrient-rich due to fish waste from a high density of 
ornamental fish but no filter system, although mechanical 
mixers and fountains are employed to increase dissolved 
oxygen levels and water movement. The plan to install 
ecological floating wetlands not only aimed to improve 
water quality but also emphasize ecosystem service 
design and an aesthetic approach to the building entrance.

As illustrated in Figure 1 (below), the ecological 
floating wetlands design was purposed along with the 
other landscape design elements associated with the 
pond, green façade design, and vertical structures. In 
this section, the discussion will only focus on the design 
process and the implementation through maintenance 
perspective over the three years of study.

As illustrated in Figure 2 (below), the students chose to 
apply local material such as discarded PET plastic bottles 
framed with 15 – 20 cm diameter underground drainage 
pipes filled with organic matter. A geotextile layer also 

Figure 1 Floating wetland design and demonstration in front pond of Faculty of Architectureand Planning, Thammasat University, 
Pathum Thani, Thailand.
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was used to support the floating beds. The shape of the 
floating structure could be either rounded or freeform. 
Recommended size of these floating wetland structures is 
about 1 m in diameter or smaller per the technical typology 
of the small to medium raft size in Table 3. Some of the larger 
beds were anchored with a bamboo structure. A diversity 
of tropical plant species was used, with a focus on varying 
the size, form, color, and root depth. The selected species 
included: Canna indica L. (Indian shot), Homalomena 

‘Emerald Gem’ (Emerald Gem), Crinum amabile Donn (Red 
Crinum), Hydrocotyle umbellata L (Water Pennywort), 
Equisetum debile (Horsetail), Cyperus imbricatus (Umbrella 
plant), Heliconia spp. (Heliconia), Cyperus papyrus L. 
(Egyptian papyrus), Thalia geniculate L. (Bent Alligator-flag), 
and Pandanus amaryllifolius Roxb. (Fragrant Pandan). While 
most of the plants are native to the region, some imported 
plant species that commonly are used in landscape design 
also were included. The planting design of each floating 
bed combined at least three types of plant species to mimic 
the diversity of a natural wetland (Figure 1, bottom left and 
right). The plant selection of this ecological floating wetland 
design illustrates plant diversity following the technical 
typology for habitat creation (Nyakang’o & Bruggen, 
1999, Table 3). From a construction and maintenance 
perspective, the demonstration wetlands were relatively 
low in cost, relying on common and local material as 
well as a low maintenance involvement. If the design can 
mimic the ecological plant community well, this floating 
structure can be used as a bio-filter and at the same time 
create a naturalist landscape. This floating wetland habitat 
can also provide ecosystem services for climate regulation, 
biological regulation, habitat, and education opportunities 
(Table 2).

MODELING NUTRIENT MANAGEMENT OF 
FLOATING EMERGENT MACROPHYTES IN A 
SINGAPORE RESERVOIR
The second case study was conducted under the 
auspices of the PUB, Singapore’s National Water Agency, 
and illustrates a technical approach to evaluating total 
phosphorus (TP) and total nitrogen (TN) uptake, an 
issue identified within the literature review as being an 
important co-benefit of floating wetlands. This case 
study focused on assessing potential treatment efficacy 

of floating wetlands, thereby addressing regulating 
ecosystem services for water quality improvement. 
Previous research on floating wetlands in this 
reservoir (Chua et al. 2012) reported nutrient removal 
for Chrysopogon zizanioides (Vetiver grass), Typha 
angustifolia and Polygonum barbatum. These species 
were included in the evaluations, as were water hyacinth 
and lotus, which commonly grow wild in the reservoir. 
A summary of the daily nutrient uptake rates by the 
different plant species is provided in Table 4.

The uptake results presented in Table 4 were used 
to develop different nutrient load reduction scenarios. 
Based on uptake rates and possible installation areas, 
six scenarios (outlined in Table 5) were assessed for 
macrophyte load uptake near the head of embayment, 
in the vicinity of catchment discharge points to the 
reservoir. The PCSWMM model configuration is shown 
in Figure 3 (left), while the rainfall and modelled flow 
at outfall OF4, as an example outfall, are shown in 
Figure 3 (right) for the period 17 November 2014 – 18 
December 2014. The total uptake masses of TN and TP 
under the different uptake/installation area scenarios 
were calculated for this model period (see Table 5). In 
comparison, the TN and TP inflows to the reservoir 
collectively from OF1, OF2, OF3, OF4, and OF5 would be 
4,007 kg and 6,513 kg, respectively, based on PCSWMM 
model results for this November-December time period. 
The low uptake scenarios would reduce the total inflow 
loads by 1% or less and therefore would not be an effective 
management strategy. However, if the moderate uptake 
rates could be achieved, TN and TP reduction for the low 
cover area would be 58% and 7%, respectively, and for 
the high cover area, TP reduction would increase to 27%. 
The high uptake rate scenarios potentially would remove 
more TN and TP mass than was input from the 5 outfalls 
and this is an unlikely scenario. Based on the planning 
level calculations, it is possible that water hyacinth, in 
particular, could positively impact nutrient levels in the 
reservoir, but this should be explored in more detail 
using a field demonstration approach (see Chua et al. 
2012) before full implementation. In addition, water 
hyacinth in the headwater areas of the embayment may 
produce adverse hydraulic conditions due to clogging 
and could result in localized flooding. This issue should 

Figure 2 A design on the floating wetland beds with discarded PET plastic bottles framed with drainage pipes and geotextile.
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SCENARIOS TN MASS UPTAKE, KG TP MASS UPTAKE, KG

Low Uptake (TN – 1.74 mg/m2/day; TP – 0.16 mg/m2/day), Low Cover Area (22.1 ha), 
uptake rates based on Chua et al. (2012)

11.9 1.10

Low Uptake (TN – 1.74 mg/m2/day; TP – 0.16 mg/m2/day), High Cover Area (90 ha), 
uptake rates based on Chua et al. (2012)

48.5 4.46

Medium Uptake (TN – 340 mg/m2/day; TP – 64 mg/m2/day), Low Cover Area (22.1 ha), 
uptake rates based on Boyd (1976)

2,329 438

Medium Uptake (TN – 340 mg/m2/day; TP – 64 mg/m2/day), High Cover Area (90 ha), 
uptake rates based on Boyd (1976)

9,486 1,786

High Uptake (TN – 2,277 mg/m2/day; TP – 307 mg/m2/day), Low Cover Area (22.1 ha), 
uptake rates are from the mid-point of the ranges reported by Reddy and De Busk (1985)

15,600 2,103

High Uptake (TN – 2,277 mg/m2/day; TP – 307 mg/m2/day), High Cover Area (90 ha), 
uptake rates are from the mid-point of the ranges reported by Reddy and De Busk (1985)

63,528 8,565

Table 5 Estimated Mass Uptake of TN and TP by Macrophytes in the Reservoir, 17 November 2014 – 18 December 2014.

Figure 3 The study catchment as represented in PCSWMM (left). The yellow lines are the modelled surface drains (conduits) while the 
red triangles represent outfalls to the reservoir. Modelled inflow to the reservoir from OF4 for the study period 17 November 2014 – 
18 December 2014 (right).

PLANT SPECIES TN UPTAKE, MG/M2/DAY TP UPTAKE, MG/M2/DAY REFERENCE

Chrysopogon zizanioides (Vetiver grass) 1.74 0.16 Chua et al. 2012

Typha angustifolia 16.2 1.57 Chua et al. 2012

Polygonum barbatum 2.82 0.4 Chua et al. 2012

Typha orientalis 180 20 Wu et al. 2011*

Water hyacinth 1,310 270 Sato and Kondo 1981

Water hyacinth 1,278–3,276 243–371 Reddy and De Busk 1985

Water hyacinth 10–200 1–40 Mahujchariyawong and Ikeda 2001**

Water hyacinth 260–340 33–64 Boyd 1976

Lotus 10–31 38 Seo et al. 2010

Table 4 Nutrient Uptake Rates by Macrophytes.

* Wetland microcosm experiments with rooted plant; ** River environment.
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be further assessed. We note that there is up to 3 orders 
of magnitude variability in the reported macrophyte 
uptake rate data, which produces uncertainty in this 
analysis. While the general modelling approach is valid, 
the uptake rate characteristics require considerably 
more research and refinement.

CONCLUSION

The combined literature review and case studies presented 
herein illustrate opportunities for investing in urban 
floating wetlands including, water quality improvement 
and increasing urban biodiversity. The ecological floating 
wetland can be applied in various urban conditions with 
minimum cost and land requirement. However, there are 
challenges related to maintenance issues, harvesting 
strategies, consumer safety if used for edible purposes 
and social perception. The relationship between plant 
community and uptake ability in the face of climate 
change should also be explored further with respect to 
designing and managing floating wetlands in a tropical 
climate. The design typologies should be considered 
by understanding suitable floating structures, plant 
diversity and selection, and additional technology which 
can be local and eco-friendly.

The two case studies highlight the positive benefits 
of ecological floating wetlands in tropical cities. Ranging 
from a small-scale fish pond in Thailand to the larger- 
scale reservoir considerations in Singapore, ecological 
floating wetlands can provide ecosystem services 
including, provisioning, regulating, habitat, aesthetics 
(cultural), and education, to the existing water bodies 
in a tropical environment. Future research must include 
better data collection and development of design 
guidelines associated with nutrient and contaminant 
uptake rates, maintenance strategies of the systems, 
plant diversity and adaptation to climate change, and 
community perception and appreciation.
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